
Welcome!

Thank you very much for purchasing our AZ-Delivery Nokia 5110 LCD SPI

display. On the following pages, we will introduce you to how to use and

setup this handy device.

Have fun!

The Nokia 5110 Display is a monochrome LCD display with 84x48 pixels

and LED backlighting. As the display was originally used mainly for mobile

phones, the working voltage of the display is 3.3V. This means that the

supply voltage and the data line voltage use 3.3V.

Voltages higher than 3.3 volts can destroy the display!

In order to be able to work with the display with our Arduino, it is important

to bring the data lines of the Arduinos, which work with 5V, to display

compatible 3.3V. This voltage conversion can be done by level shifters.

The display has a total of 8 connections, which are assigned as follows:

Pin: Description: Additional information:

1 RST (Reset) Input

2 CE (Chip Enable) Input

3 DC (Data/Control) Input

4 DIN (Data in) Input

5 CLK (Clock) Input

6 VCC Power supply - max. 3.3V!

7 LIGHT LED active when connected to GND

8 GND (Ground) Ground

Wiring the display with Arduino

The following wiring diagram shows schematically the necessary wiring

of the display with the level shifters and the Arduino.

Arduino Pin > via Level shifter > LCD pin

Ground > GND, LIGHT Black wire

5V > For level shifter Red wire

3.3V > VCC Red wire

D8 > CLK White wire

D9 > DIN Blue wire

D10 > DC Orange wire

D11 > RST Green wire

D12 > CE Yellow wire

Making test sketch

Now we come to the actual programming of the display. We want to display

the following bit pattern to our screen:

We keep in mind that the display has a resolution of 84 column pixels x 48

row pixels. The line pixels in the internal RAM of the display are organized

in bytes, so that 8 line pixels are written with the first output of the first data

byte. This is followed by a jump to the next column, in which 8 bits are

output as bytes, always starting with the LSB bit first. After reaching column

84, a change to the next 8-bit line takes place. Thus we reach a total of 48/8

= 6 byte lines with 84 bytes each. The complete screen space in the RAM

thus amounts to 6 x 84 bytes = 504 bytes. After reaching the limit, the

following characters are displayed again at the beginning of the display.

Writing the byte 0 to all places of the display results a displayed text on the

screen.

To get our logo into the display, we calculate the corresponding hex value or

decimal value from each 8 bit of column 0 to 65. The resulting array of byte

values are our data, which we will send to the display later. In the example,

this calculation has already been carried out in the line "Hex value". These

values serve us in the sketch as display data, which are stored in the array

"LOGOTBL" can be deposited. The Arduino function "shiftout" takes over

the actual data transmission and outputs the data serially via a clock signal

generated in the function itself.

The data is taken over by the display when the clock signal changes from

LOW to HIGH. This can be seen in the following oscilloscope picture:

Pin Clock (CLK) has the color cyan, the data pin the color yellow. Pin Chip

Enable (CE) has the color magenta. You can see the transmission of 2

bytes after CE goes to LOW.

The Arduino Code

// Control Nokia 5110 LCD Display

#define CLK 8

#define DIN 9

#define DC 10

#define CE 11

#define RST 12

static const byte LOGOTBL[] = { //AZ Delivery Bitmap Logo

0x0F,0x5,0x5,0x0F,0x90,0xD0,0xB0,0x90,0x00,0x00,0x08,0x08,0x08,0x08,0x00,

0x00,0xFF,0x81,0x81,0x81,0x81,0x7E,0x00,

0xFF,0x89,0x89,0x81,0x81,0x81,0x00,0xFF,0x80,0x80,0x80,0x80,0x80,0x00,

0xFF,0x00,0x07,0x38,0xC0,0xC0,0x38,0x07,

0x00,0xFF,0x89,0x89,0x81,0x81,0x81,0x00,0xFF,0x09,0x19,0x29,0x49,0x86,

0x00,0xF,0x90,0x90,0x90,0x90,0xF7

};

// Functions

void LcdWriteCmd(byte order) { // Send command to display

digitalWrite(DC, LOW); // DC Pin is LOW for commands to the display

shiftOut(DIN, CLK, MSBFIRST, order); // Transmit data byte serially

// with MSB (most significant byte) first

}

void LcdWriteData(byte data) { // Send data to display

digitalWrite(DC, HIGH); // DC Pin is HIGH for data to the display

shiftOut(DIN, CLK, MSBFIRST, data); // Transmit data byte serial

// with MSB (most significant byte) first

}

void LcdWriteLogo() {

digitalWrite(CE, LOW); // Chip Enable Pin is LOW,

// data transfer is activated

LcdWriteCmd(0x80); // Jump to row 0 column 0, Jump Column

LcdWriteCmd(0x40); // Skip row

// Clear screen completely

for(int i=0; i < 504; i++) {

LcdWriteData(0x00); // Delete complete display

}

// Output AZ logo

for(int i=0; i < 66; i++) {

LcdWriteData(LOGOTBL[i]); // Write logo data into display

}

digitalWrite(CE, HIGH); // Chip Enable Pin is HIGH,

// data transfer is deactivated

}

void setup() {

pinMode(CLK, OUTPUT); // Switch pin to output

pinMode(DIN, OUTPUT); // Switch pin to output

pinMode(DC, OUTPUT); // Switch pin to output

pinMode(CE, OUTPUT); // Switch pin to output

pinMode(RST, OUTPUT); // Switch pin to output

digitalWrite(RST, HIGH); // Reset signal to Nokia display

delay(100);

// forward

digitalWrite(RST, LOW);

delay(100);

digitalWrite(RST, HIGH);

delay(100);

// Initialization of the display according to data sheet

digitalWrite(CE, LOW); // Chip Enable Pin is LOW,

// data transfer is activated

LcdWriteCmd(0x21); // Extended command set LCD

LcdWriteCmd(0x90); // set LCD Vop

LcdWriteCmd(0x20); // Normal command LCD

LcdWriteCmd(0x0C); // LCD Normal Mode

digitalWrite(CE, HIGH); // Chip Enable Pin is HIGH,

// data transfer is deactivated

}

void loop() {

LcdWriteLogo();

delay(20000);

}

After wiring the display and uploading the sketch, we receive the following

output:

Further information about the display is available on the Internet in the form

of data sheets. Just google to "PCD8544 data sheet".

You've done it, you can now use and program your

module for your projects.

Now it is time to learn and make the Projects on your own. You can do that

with the help of many example scripts and other tutorials, which you can

find on the internet.

If you are looking for the high quality products for Arduino and

Raspberry Pi, AZ-Delivery Vertriebs GmbH is the right company to get

them from. You will be provided with numerous application examples,

full installation guides, eBooks, libraries and assistance from our

technical experts.

https://az-delivery.de

Have Fun!

Impressum

https://az-delivery.de/pages/about-us

https://az-delivery.de/pages/about-us
https://az-delivery.de/

